Disciplined Convex Stochastic Programming: A New Framework for Stochastic Optimization
نویسندگان
چکیده
We introduce disciplined convex stochastic programming (DCSP), a modeling framework that can significantly lower the barrier for modelers to specify and solve convex stochastic optimization problems, by allowing modelers to naturally express a wide variety of convex stochastic programs in a manner that reflects their underlying mathematical representation. DCSP allows modelers to express expectations of arbitrary expressions, partial optimizations, and chance constraints across a wide variety of convex optimization problem families (e.g., linear, quadratic, second order cone, and semidefinite programs). We illustrate DCSP’s expressivity through a number of sample implementations of problems drawn from the operations research, finance, and machine learning literatures.
منابع مشابه
A Stochastic Model for Water Resources Management
Irrigation water management is crucial for agricultural production and livelihood security in many regions and countries throughout the world. Over the past decades, controversial and conflictladen water-allocation issues among competing municipal, industrial and agricultural interests have raised increasing concerns. Particularly, growing population, varying natural conditions and shrinking wa...
متن کاملMedium Term Hydroelectric Production Planning - A Multistage Stochastic Optimization Model
Multistage stochastic programming is a key technology for making decisions over time in an uncertain environment. One of the promising areas in which this technology is implementable, is medium term planning of electricity production and trading where decision makers are typically faced with uncertain parameters (such as future demands and market prices) that can be described by stochastic proc...
متن کاملAn Optimization Model for Multi-objective Closed-loop Supply Chain Network under uncertainty: A Hybrid Fuzzy-stochastic Programming Method
In this research, we address the application of uncertaintyprogramming to design a multi-site, multi-product, multi-period,closed-loop supply chain (CLSC) network. In order to make theresults of this article more realistic, a CLSC for a case study inthe iron and steel industry has been explored. The presentedsupply chain covers three objective functions: maximization ofprofit, minimization of n...
متن کاملA new stochastic 3D seismic inversion using direct sequential simulation and co-simulation in a genetic algorithm framework
Stochastic seismic inversion is a family of inversion algorithms in which the inverse solution was carried out using geostatistical simulation. In this work, a new 3D stochastic seismic inversion was developed in the MATLAB programming software. The proposed inversion algorithm is an iterative procedure that uses the principle of cross-over genetic algorithms as the global optimization techniqu...
متن کاملSolving fuzzy stochastic multi-objective programming problems based on a fuzzy inequality
Probabilistic or stochastic programming is a framework for modeling optimization problems that involve uncertainty.In this paper, we focus on multi-objective linear programmingproblems in which the coefficients of constraints and the righthand side vector are fuzzy random variables. There are several methodsin the literature that convert this problem to a stochastic or<b...
متن کامل